COURSE HANDOUT

Course Code	ACSC13	
Course Name	Design and Analysis of Algorithms	
Class / Semester	IV SEM	
Section	A-SECTION	
Name of the Department	CSE-CYBER SECURITY IARE11023	
Employee ID		
Employee Name	Dr K RAJENDRA PRASAD	
Topic Covered	Asymptotic Notations- Big, Omega, and Theta Notations examples	
Course Outcome/s	Compute the time complexity with asymptotic notations	
Handout Number	13	
Date 12 April, 2023		

Content about topic covered: Big Oh, Omega, and Theta Notations

<u>Big O notation:</u> The function f(n) = O(g(n)) iff (if and only if) there exist positive constants c and no such that $f(n) \le c^* g(n)$ for all $n, n \ge n_0$.

The statement f(n) = O(g(n)) states only that g(n) is an **upper bound** on the value of f(n) for all $n, n \ge n_0$.

Eg:

1.	3n+2 = O(n)	3n+2 <= 4n	$\forall n \ge 2$
2.	100n + 6 = O(n)	100n +6 <= 101n	$\forall n \ge 6$
3.	$10n^2+4n+2 = O(n^2)$	10n ² +4n+2 <= 11n ²	$\forall n \ge 5$
4.	$6*2^n+n^2 = O(2^n)$	6*2n+n2 <= 7*2n	$\forall n \ge 4$

Note: $\underline{O(1)} \rightarrow$ Constant line

 $O(n) \rightarrow Linear$

 $O(n^2) \rightarrow Quadratic$

 $O(n^3) \rightarrow Cubic$

 $O(2^n) \rightarrow Exponential$

Omega notation (Ω): The function $f(n) = \Omega(g(n))$ iff (if and only if) there exist positive constants c and no such that $f(n) \ge c^* g(n)$ for all n, $n \ge n_0$.

The statement $f(n) = \Omega(g(n))$ states only that g(n) is a **lower bound** on the value of f(n) for all n, $n \ge n_0$.

Eg:

1.
$$3n+2 = O(n)$$
 $3n+2 >= 3n$ $\forall n \ge 1$

2.
$$100n + 6 = O(n)$$
 $100n + 6 >= 100n$ $\forall n \ge 1$

3.
$$10n^2+4n+2 = O(n^2)$$
 $10n^2+4n+2 \ge 10n^2$ $\forall n \ge 1$

Theta notation (0): The function $f(n) = \theta(g(n))$ iff (if and only if) there exist positive constants c_1 , c_2 and n_0 such that $c_1^* g(n) \le f(n) \le c_2^* g(n)$ for all $n, n \ge n_0$.

The statement $f(n) = \theta(g(n))$ states only that g(n) is an **both an upper bound** and lower bound on the value of f(n) for all n, $n \ge n_0$.

Eg:
$$3n + 2 = \theta(n)$$
 $3n \le 3n + 2 \le 4n$ $\forall n$

Little Oh notation: The function f(n) = o(g(n)) iff

$$\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right)^{\square} = 0$$

Eg:
$$3n+2 = o(n^2)$$

$$\lim_{n\to\infty} \left(\frac{3n+2)}{n^2}\right)^{\square}$$

 \rightarrow

$$\lim_{n\to\infty} \left(\frac{3}{n} + \frac{2}{n^2}\right)^{\square} = 0$$